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Abstract
In this paper, I provide an alternate formula to use for hyperbolic angles utilizing the unit hyperbola
and hyperbolic trigonometry. This hyperbolic angle, commonly denoted 6, is used as an input for
functions such as sinh(6) and cosh(6), and thus the reformulation will provide alternate means of using
these hyperbolic trigonometric functions.

1 Introduction

The subject of heavy use in fields such as physics in calculating catenary curves, hyperbolic trigonometric
functions serve as an alternative to ordinary trigonometric functions when it comes to dealing with curves.

As functions, hyperbolic trigonometric functions take the input of a hyperbolic angle, and so in this
research paper, I seek to calculate the hyperbolic angle. In other words, the following is my overall research
question: what is the simplified equation for the hyperbolic angle of hyperbolic trigonometric functions? In
the hopes of that strengthening the definition of hyperbolic trigonometric functions, I seek to find such a

simplified formula.

2 The Definition of Hyperbolic Trigonometry

Before any analysis of hyperbolic trigonometric functions is done, they ought to first be defined. Most of the
hyperbolic trigonometric functions (tanh, coth, sech, csch) are derived from two primary functions: sinh and
cosh. These two functions are quite similar in definition to the normal trigonometric functions of sine and
cosine. There are many ways to define all of these functions, but for now, they shall be defined graphically.

Sine and cosine are both geometrically defined around the unit circle, which is a circle of radius one
centered around the origin. The values of cosine and sine are then the x and y values of points on the unit
circle, respectively. In other words, the circle is represented by the equation 22 4+ y? = 1, with any point on
the circle being (cos(f),sin(f)), as demonstrated in Diagram 1.
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(cos 6, sin 0)
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Hyperbolic trigonometric functions, on the other hand, are defined instead along the hyperbola (the “unit
hyperbola”), with the newly defined cosh and sinh being represented by x and y, respectively, 3 meaning each
point on the unit hyperbola can be represented by (cosh(8),sinh(#)). In this case, the graphical representation
of the constant # is not as simple as the angle formed by the line stretching from the origin to the point
rather it is double the area created by the purple region shown in Diagram 2. For the sake of gaining a
deeper mathematical understanding, 6 will now be derived from Diagram 2.

(cosh®, sinh8)

3 Background Proofs

Various useful lemmas/theorems will now be derived to make the integration process more efficient.
Lemma 3.1. tan(sec™!(z)) = Vo2 — 1

Proof. Tt is well-established that tan?(z) + 1 = sec?(z). Therefore:
tan?(x) + 1 = sec?(z) = tan®(z) = sec?(z) — 1 = tan(z) = \/sec?(x) — 1
Doing a change of variables with y = sec?(x), we have:

tan(y) = \/secz(y) —1= \/(sec(sec—l(av))2 —-1)= \/a;2 -1

O
Lemma 3.2. cosh(z) = {/sinh?(z) + 1
Proof. From McMahon (2015), we know that cosh?(z) — sinh?(z) = 1, and so:
cosh?(z) — sinh?(z) = 1 = cosh(z) = y/sinh?(z) + 1
O

Lemma 3.3 (Integration by Parts). [udv =vu— [vdu

Proof.
/d d:c—/f dx+/f

Then, utilizing the Fundamental Theorem of Calculus:

/f dx+/f



- / f(@)d (@)dz = f(z)g(z) - / F(2)g(x)de

Substituting f(z) = u and g(z) = v, we yield the desired result. O

4 Finding the Value of Theta

Firstly, the line connecting the origin to the point (cosh(6),sinh(#)) can be written as y = (Z;r;}}i((zg) x. Next,
in order to find the area, we can integrate.
Remark. As we integrate, 8 will be treated as a constant.

We, therefore, can graphically derive the equation we seek to solve as follows:

0 ! /sinh(6) cosh(®) 7 / sinh(h)

7 — 1

i= ), Gan) e [ (@) = 7)o .
where f(x) represents the part of the equation of #2 — y? = 1 that lies in the first quadrant. We must,
therefore, first find f(x):

2 —y?* =1=y=+V22—1 where v € (—o00, —1] U1, 0)

= f(x) = V&% — 1 where z € [1,0)

Therefore, plugging this in, we can rewrite our initial formula:

- [ () [ () o

Grouping the integrals and simplifying, we get:

Q _ (Slnh(9)> /Cosh(O) e cosh(0) i (3)
0 1

2 cosh(6)

The first integral simplifies quickly:
f _ sinh(6) cosh(f coh(®) o
§:b1n()2c05()_ T 1da @)
1

The second integral is not quite as simple, and will be given its own sequence of subsections.

4.1 Integration of fCOSh(e) Va2 — 1dx

1
First, we can make use of change of variables, substituting « = sec(w):
cosh(0) sec ™! (cosh(h))
Va2~ ldz = / sec(w) tan(w)/sec? (1) — Tduw (5)
1 0
From here on, let @ = 0 and b = sec™!(cosh(f)). We can then substitute in tan?(w) = sec?(w) — 1:
b b
/ sec(w) tan(w)/sec?(w) — ldw = / sec(w) tan(w)y/tan?(w)dw (6)

This can then be simplified further by once again applying the same trigonometric identity:

/ab tan?(w) sec(w)dw = /ab sec? (w)dw — /ab sec(w)dw (7)

Each integral can then be solved independently.



Integration of f; sec(w)dw and fab sec?(w)dw

b
Lemma 4.1. ff sec(w)dw = In|sec(w) + tan(w)|

a

Proof. Firstly:

/  sec(w)du — / " sec(w) (W) w= [ " sec? (w) + sec(w) tan(w) |

sec(w) + tan(w) sec(w) + tan(w)

Next, using a change of variable of u = sec(w) + tan(w), and letting a, and b, denote the new upper and
lower bounds under this substitution, we get:

_ /b“ sec? (w0 + sec(w) tan(w)) du _ /b“ ldu —1nul bu
a u sec?(w) + sec(w) tan(w) ay, U a
b
= In |sec(w) + tan(w)|
O
b b
Lemma 4.2. fab sec®(w)dw = 3 tan(w) sec(w)| + % In|sec(w) + tan(w)|
Proof. First, we can apply Lemma 3.3 with dv = sec?(w) and u = sec(w):
b b b
/ sec?(w)dw = tan(w) sec(w)| — / tan?(w) sec(w)dw
a a a
b b
= tan(w) sec(w)| — / (sec®(w) — 1) sec(w)dw
a a
b b b b
= tan(w) sec(w)| — / sec®(w)dw + / sec(w)dw = / sec? (w)dw
a a a a
b 1 ’ 1
= / sec’ (w)dw = — (w) sec(w)| + —F——
a tan a 2[ sec(w)dw
Using Lemma 4.1, we achieve the desired result. O

4.2 Tying Sums Together
Substituting results from lemmas 4.1 and 4.2, as well as substituting back in the actual bounds, we net:

sec™ ! (cosh(8))

cosh(0) 1 1
/ Va2 —1de = 5 tan(w) sec(w) — B In | sec(w) + tan(w)]
1

(8)

0

Now, we can simplify this expression by treating each part separately.

4.3 Evaluating § tan(w)sec(w)— 3 In | sec(w) +tan(w)| at w = sec™*(cosh(d)) and w = 0

Lemma 4.3. 1 tan(w)sec(w) — 3 In|sec(w) + tan(w)| at w = sec™*(cosh(6))

= 1 sinh(0) cosh(¢) — 3 In | cosh(6) + sinh(0)|



Proof. We can first plug this in and then simplify:
1 1
3 tan(sec™ ! (cosh(f))) sec(sec™* (cosh(f))) — §ln| sec(sec' ! (cosh(h))) + tan(sec ™! (cosh(#)))|
= %tan(secfl(cosh(ﬂ))) cosh(f) — % In | cosh(f) + tan(sec™* (cosh(6)))|
Using Lemma 3.1, we get:

1 1
=3 cosh(6)4/cosh?(f) — 1 — 3 In

cosh(6) + 1/ cosh?(6) — 1’
Consequently, Lemma 3.2 nets us:
= % sinh(0) cosh(#) — % In | cosh(8) + sinh(6)]
which completes the proof. O
Lemma 4.4. 1 tan(w) sec(w) — 3 In|sec(w) + tan(w)| at w =0
=0

Proof. Plugging in, we simplify as follows:

1 1 1 1
itan(()) sec(0) — §ln|sec(0) + tan(0)| = 3 -0-1—- §1n|1 +0/=0

O
Therefore, we have the following equation:
cosh(8) 1 1
: V22— ldz = 3 sinh(0) cosh(0) — 3 In | cosh(f#) + sinh(6)] (9)
4.4 All-Encompassing Area
Putting both parts together, we now have:
6 = In| cosh() + sinh(0)]| (10)

Quite an elegant solution.

5 Conclusion

To take the final result further, recall that, along the unit hyperbola, 2 = cosh(f) and y = sinh(#). Recall
also that y = f(z) = V22 — 13 z € [1,00). Therefore, we get:

Hzln‘x—i—\/xQ—l‘:xE[l,oo) (11)

One can think of this as an equation for cosh™ () defined on z € [1,00).
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